The spectral density function describes the second-order properties of a stationary stochastic process on $\mathbb{R}^d$. This paper considers the nonparametric estimation of the spectral density of a continuous-time stochastic process taking values in a separable Hilbert space. Our estimator is based on kernel smoothing and can be applied to a wide variety of spatial sampling schemes including those in which data are observed at irregular spatial locations. Thus, it finds immediate applications in Spatial Statistics, where irregularly sampled data naturally arise. The rates for the bias and variance of the estimator are obtained under general conditions in a mixed-domain asymptotic setting. When the data are observed on a regular grid, the optimal rate of the estimator matches the minimax rate for the class of covariance functions that decay according to a power law. The asymptotic normality of the spectral density estimator is also established under general conditions for Gaussian Hilbert-space valued processes. Finally, with a view towards practical applications the asymptotic results are specialized to the case of discretely-sampled functional data in a reproducing kernel Hilbert space.
翻译:光谱密度函数描述一个固定的随机过程在$$\mathb{R ⁇ d$ 上的第二顺序特性。 本文考虑对连续时间随机过程的光密度进行非参数性估计, 在分立的 Hilbert 空间中采集值。 我们的测算器以内核平滑为基础, 可用于广泛的空间取样计划, 包括在不规则的空间地点观测数据。 因此, 它在空间统计中找到直接的应用, 在那里, 数据不定期抽样的自然产生数据。 测算器的偏差和差异率是在混合的多面性静态环境下在一般条件下取得的。 当在常规电网中观测数据时, 测算器的最佳率与根据电法腐蚀的常态函数等级的微缩增速率相匹配。 光密度估测器的正常度也是在高斯· 希尔伯特- 空间估价过程的一般条件下建立的。 最后, 以实际应用为视角, 将生成功能性静态数据结果的功能性循环结果用于案件。