In this paper, we present Zero-data Based Repeated bit flip Attack (ZeBRA) that precisely destroys deep neural networks (DNNs) by synthesizing its own attack datasets. Many prior works on adversarial weight attack require not only the weight parameters, but also the training or test dataset in searching vulnerable bits to be attacked. We propose to synthesize the attack dataset, named distilled target data, by utilizing the statistics of batch normalization layers in the victim DNN model. Equipped with the distilled target data, our ZeBRA algorithm can search vulnerable bits in the model without accessing training or test dataset. Thus, our approach makes the adversarial weight attack more fatal to the security of DNNs. Our experimental results show that 2.0x (CIFAR-10) and 1.6x (ImageNet) less number of bit flips are required on average to destroy DNNs compared to the previous attack method. Our code is available at https://github. com/pdh930105/ZeBRA.
翻译:在本文中,我们展示了零数据基础的重复点击攻击(ZeBRA),它通过合成自己的攻击数据集,准确摧毁了深神经网络(DNNs)。许多先前关于对抗性重量攻击的工程不仅需要重量参数,而且还需要搜索要攻击的脆弱部分的培训或测试数据集。我们提议利用受害者DNN模型中批量正常化层的统计数字,将攻击数据集(命名为蒸馏目标数据)综合起来。用已提取的目标数据拼凑起来,我们的ZeBRA算法可以在模型中搜索脆弱部分,而无需获得训练或测试数据集。因此,我们的方法使得对抗性重量攻击对DNNs的安全更具致命性。我们的实验结果表明,平均需要2.0x(CIFAR-10)和1.6x(IgageNet)比前一次攻击方法少点击次数,才能销毁DNS。我们的代码可在https://github.com/pdh0105/ZeBRA。