In this paper, we present Zero-data Based Repeated bit flip Attack (ZeBRA) that precisely destroys deep neural networks (DNNs) by synthesizing its own attack datasets. Many prior works on adversarial weight attack require not only the weight parameters, but also the training or test dataset in searching vulnerable bits to be attacked. We propose to synthesize the attack dataset, named distilled target data, by utilizing the statistics of batch normalization layers in the victim DNN model. Equipped with the distilled target data, our ZeBRA algorithm can search vulnerable bits in the model without accessing training or test dataset. Thus, our approach makes the adversarial weight attack more fatal to the security of DNNs. Our experimental results show that 2.0x (CIFAR-10) and 1.6x (ImageNet) less number of bit flips are required on average to destroy DNNs compared to the previous attack method. Our code is available at https://github. com/pdh930105/ZeBRA.


翻译:在本文中,我们展示了零数据基础的重复点击攻击(ZeBRA),它通过合成自己的攻击数据集,准确摧毁了深神经网络(DNNs)。许多先前关于对抗性重量攻击的工程不仅需要重量参数,而且还需要搜索要攻击的脆弱部分的培训或测试数据集。我们提议利用受害者DNN模型中批量正常化层的统计数字,将攻击数据集(命名为蒸馏目标数据)综合起来。用已提取的目标数据拼凑起来,我们的ZeBRA算法可以在模型中搜索脆弱部分,而无需获得训练或测试数据集。因此,我们的方法使得对抗性重量攻击对DNNs的安全更具致命性。我们的实验结果表明,平均需要2.0x(CIFAR-10)和1.6x(IgageNet)比前一次攻击方法少点击次数,才能销毁DNS。我们的代码可在https://github.com/pdh0105/ZeBRA。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
12+阅读 · 2020年12月10日
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员