Edge Computing (EC) offers a superior user experience by positioning cloud resources in close proximity to end users. The challenge of allocating edge resources efficiently while maximizing profit for the EC platform remains a sophisticated problem, especially with the added complexity of the online arrival of resource requests. To address this challenge, we propose to cast the problem as a multi-armed bandit problem and develop two novel online pricing mechanisms, the Kullback-Leibler Upper Confidence Bound (KL-UCB) algorithm and the Min-Max Optimal algorithm, for heterogeneous edge resource allocation. These mechanisms operate in real-time and do not require prior knowledge of demand distribution, which can be difficult to obtain in practice. The proposed posted pricing schemes allow users to select and pay for their preferred resources, with the platform dynamically adjusting resource prices based on observed historical data. Numerical results show the advantages of the proposed mechanisms compared to several benchmark schemes derived from traditional bandit algorithms, including the Epsilon-Greedy, basic UCB, and Thompson Sampling algorithms.
翻译:通过将云层资源定位在接近终端用户的地方,电磁计算(EC)为用户提供了优越的经验。高效分配边缘资源,同时为欧盟委员会平台争取最大利润的挑战仍然是一个复杂的问题,特别是由于资源请求在线抵达的复杂性增加。为了应对这一挑战,我们提议将这一问题作为一个多武装强盗问题,并开发两个新的在线定价机制,即“Kullback-Leibel Unible Infracy Bound”(KL-UCB)算法和“Min-Max Optimal 算法”,用于多样化的边缘资源分配。这些机制实时运作,不需要事先了解需求分配情况,而实际上很难获得这种知识。拟议的上市定价计划允许用户选择和支付其首选资源,而平台则根据观察到的历史数据动态调整资源价格。数字结果显示,拟议机制与由传统土匪算法(包括Epsilon-Greedy、基本UCB和Thompson Sampling算法)产生的若干基准计划相比,具有优势。