The Metaverse will provide numerous immersive applications for human users, by consolidating technologies like extended reality (XR), video streaming, and cellular networks. Optimizing wireless communications to enable the human-centric Metaverse is important to satisfy the demands of mobile users. In this paper, we formulate the optimization of the system utility-cost ratio (UCR) for the Metaverse over wireless networks. Our human-centric utility measure for virtual reality (VR) applications of the Metaverse represents users' perceptual assessment of the VR video quality as a function of the data rate and the video resolution, and is learnt from real datasets. The variables jointly optimized in our problem include the allocation of both communication and computation resources as well as VR video resolutions. The system cost in our problem comprises the energy consumption and delay, and is non-convex with respect to the optimization variables due to fractions in the mathematical expressions. To solve the non-convex optimization, we develop a novel fractional programming technique, which contributes to optimization theory and has broad applicability beyond our paper. Our proposed algorithm for the system UCR optimization is computationally efficient and finds a stationary point to the constrained optimization. Through extensive simulations, our algorithm is demonstrated to outperform other approaches.


翻译:元宇宙将整合扩展现实(XR)、视频流和蜂窝网络等技术,为人类用户提供许多沉浸式应用。 通过优化无线通信以实现以人为中心的元宇宙对于满足移动用户的需求至关重要。在本文中,我们制定了元宇宙无线网络的系统效用-成本比率(UCR)优化。我们针对元宇宙虚拟现实(VR)应用的人类中心效用度量表示用户对VR视频质量的感知评估,其作为数据速率和视频分辨率的函数进行学习,并从实际数据集中学习得到。在我们的问题中共同优化的变量包括通信和计算资源的分配以及VR视频分辨率。我们问题中的系统成本包括能量消耗和延迟,由于数学表达式中存在分数而对优化变量的非凸性。为了解决非凸优化,我们开发了一种新的分数规划技术,为优化理论做出了贡献,具有超出我们论文范围的广泛适用性。我们提出的系统UCR优化算法计算效率高,能够找到一个约束优化的稳定点。通过广泛的模拟,我们的算法被证明优于其他方法。

0
下载
关闭预览

相关内容

【元宇宙】“The State Of The Metaverse”26页报告
专知会员服务
43+阅读 · 2022年5月25日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2022年2月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员