There is increasing interest in allocating treatments based on observed individual characteristics: examples include targeted marketing, individualized credit offers, and heterogeneous pricing. Treatment personalization introduces incentives for individuals to modify their behavior to obtain a better treatment. Strategic behavior shifts the joint distribution of covariates and potential outcomes. The optimal rule without strategic behavior allocates treatments only to those with a positive Conditional Average Treatment Effect. With strategic behavior, we show that the optimal rule can involve randomization, allocating treatments with less than 100% probability even to those who respond positively on average to the treatment. We propose a sequential experiment based on Bayesian Optimization that converges to the optimal treatment rule without parametric assumptions on individual strategic behavior.


翻译:针对观察到的个体特征进行治疗个性化分配越来越受关注:例如有针对性的营销、个性化的信贷选择和异质性定价。治疗个性化分配引入了个体为了获得更好的治疗而改变行为的激励。策略行为改变了协变量和潜在结果的联合分布。没有策略行为时,最优规则只将治疗分配给平均条件治疗效果为正的人。有了策略行为,我们发现最优规则可以涉及随机化,即使对于那些平均情况下对治疗有积极反应的人,治疗也可能被分配不到 100%。我们提出了一种基于贝叶斯优化的顺序实验,它可以在不需要个体策略行为参数假设的情况下收敛到最优的治疗规则。

0
下载
关闭预览

相关内容

核因果模型:治疗效果、反事实、中介和代理,57页ppt
专知会员服务
30+阅读 · 2022年8月30日
专知会员服务
19+阅读 · 2021年7月11日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
NeurlPS2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年9月26日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月20日
VIP会员
相关VIP内容
相关资讯
NeurlPS2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年9月26日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员