Since its first release in the late 1990s, Wi-Fi has been updated to keep up with evolving user needs. Recently, Wi-Fi and other radio access technologies have been pushed to their edge when serving Augmented Reality (AR) applications. AR applications require high throughput, low latency, and high reliability to ensure a high-quality user experience. The 802.11be amendment, which will be marketed as Wi-Fi 7, introduces several features that aim to enhance its capabilities to support challenging applications like AR. One of the main features introduced in this amendment is Multi-Link Operation (MLO) which allows nodes to transmit and receive over multiple links concurrently. When using MLO, traffic is distributed among links using an implementation-specific traffic-to-link allocation policy. This paper aims to evaluate the performance of MLO, using different policies, in serving AR applications compared to Single-Link (SL). Experimental simulations using an event-based Wi-Fi simulator have been conducted. Our results show the general superiority of MLO when serving AR applications. MLO achieves lower latency and serves a higher number of AR users compared to SL with the same frequency resources. In addition, increasing the number of links can improve the performance of MLO. Regarding traffic-to-link allocation policies, we found that policies can be more susceptible to channel blocking, resulting in possible performance degradation.


翻译:自1990年代末以来,Wi-Fi已经更新以适应用户不断变化的需求。最近,当服务增强现实(AR)应用程序时,Wi-Fi和其他无线接入技术已被推动到其极限。AR应用程序需要高吞吐量,低延迟和高可靠性,以确保高质量的用户体验。 802.11be修正案将被营销为Wi-Fi 7,引入了几个功能,旨在增强其支持应对AR等挑战应用程序的能力。此修正案中引入的主要功能之一是多链路运行(MLO),它允许节点同时通过多个链路进行传输和接收。使用MLO时,流量通过特定于实现的流量到链路分配策略在链路之间分配。本文旨在评估MLO在服务AR应用程序时的性能,使用不同的策略与单链路(SL)进行比较。使用事件驱动的Wi-Fi模拟器进行了实验模拟。我们的结果显示,与具有相同频率资源的SL相比,MLO通常具有优势,可以实现更低的延迟并服务更多的AR用户。此外,增加链路数量可以改善MLO的性能。关于流量到链路分配策略,我们发现策略更容易受到信道阻塞的影响,从而可能导致性能下降。

0
下载
关闭预览

相关内容

《低成本无人机蜂群实时目标检测应用》96页论文
专知会员服务
100+阅读 · 2023年4月24日
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
【ICDM2022教程】多目标优化与推荐,173页ppt
专知会员服务
46+阅读 · 2022年12月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员