A triangle center such as the incenter, barycenter, etc., is specified by a function thrice- and cyclically applied on sidelengths and/or angles. Consider the 1d family of 3-periodics in the elliptic billiard, and the loci of its triangle centers. Some will sweep ellipses, and others higher-degree algebraic curves. We propose two rigorous methods to prove if the locus of a given center is an ellipse: one based on computer algebra, and another based on an algebro-geometric method. We also prove that if the triangle center function is rational on sidelengths, the locus is algebraic
翻译:三角中心, 如中枢、 中枢等三角中心, 由在侧长和/ 或角度上循环应用的三倍函数指定 。 考虑在椭圆面板和三角中心的地缘上三分之一的三周期组。 一些人会清除椭圆, 还有其他高度代数曲线 。 我们提出两种严格的方法来证明某个中心的中心位置是否为椭圆: 一种基于计算机代数,另一种基于代数法。 我们还证明, 如果三角中心功能在侧长上是合理的, 则其位置是代数法 。