We develop a spectral method to solve the heat equation in a closed cylinder, achieving a near-optimal $\mathcal{O}(N\log N)$ complexity and high-order, \emph{spectral} accuracy. The algorithm relies on a novel Chebyshev--Chebyshev--Fourier (CCF) discretization of the cylinder, which is easily implemented and decouples the heat equation into a collection of smaller, sparse Sylvester equations. In turn, each of these equations is solved using the alternating direction implicit (ADI) method, which improves the complexity of each solve from cubic in the matrix size (in more traditional methods) to log-linear; overall, this represents an improvement in the heat equation solver from $\mathcal{O}(N^{7/3})$ (in traditional methods) to $\mathcal{O}(N\log N)$. Lastly, we provide numerical simulations demonstrating significant speed-ups over traditional spectral collocation methods and finite difference methods, and we provide a framework by which this heat equation solver could be applied to the incompressible Navier--Stokes equations. For the latter, we decompose the equations using a poloidal--toroidal (PT) decomposition, turning them into heat equations with nonlinear forcing from the advection term; by using implicit--explicit methods to integrate these, we can achieve the same $\mathcal{O}(N\log N)$ complexity and spectral accuracy achieved here in the heat equation.
翻译:我们开发了一个光谱方法来解决闭合气瓶中的热方程式, 实现接近最佳的 $\ mathcal{O}( N\log Nn) 的复杂度和高顺序、 emph{ 光谱} 准确性。 算法依赖一个小的 Chebyshev- Chebyshev- Fourier (CCF) 气瓶的离散化法, 这个方法可以很容易地实施, 并且将热方程式解到一个小的、 稀疏的 Sylvester 方程式中。 最后, 我们提供数字模拟, 表明在传统的热频谱共位法和固定差异法中, 它可以提高每立方( 以传统方法) 从基数的精度( 以更传统方法) 到日内线, 每立方程式中的精度解度的复杂度。 我们提供了一种框架, 使热方程式的精度( ) 能够在这里将硬度解的解法转化为不易变的等式, 。