We address facts and open questions concerning the degree of ill-posedness of the composite Hausdorff moment problem aimed at the recovery of a function $x \in L^2(0,1)$ from elements of the infinite dimensional sequence space $\ell^2$ that characterize moments applied to the antiderivative of $x$. This degree, unknown by now, results from the decay rate of the singular values of the associated compact forward operator $A$, which is the composition of the compact simple integration operator mapping in $L^2(0,1)$ and the non-compact Hausdorff moment operator $B^{(H)}$ mapping from $L^2(0,1)$ to $\ell^2$. There is a seeming contradiction between (a) numerical computations, which show (even for large $n$) an exponential decay of the singular values for $n$-dimensional matrices obtained by discretizing the operator $A$, and \linebreak (b) a strongly limited smoothness of the well-known kernel $k$ of the Hilbert-Schmidt operator $A^*A$. Fact (a) suggests severe ill-posedness of the infinite dimensional Hausdorff moment problem, whereas fact (b) lets us expect the opposite, because exponential ill-posedness occurs in common just for $C^\infty$-kernels $k$. We recall arguments for the possible occurrence of a polynomial decay of the singular values of $A$, even if the numerics seems to be against it, and discuss some issues in the numerical approximation of non-compact operators.
翻译:我们处理有关复合Hausdorf时点问题失当程度的事实和公开问题,其目的在于从无限维序列空间的元素中回收一个函数$x 以L2/2,0,1美元,从无限维序列空间的元素中回收一个函数$x 美元= 0.0,1美元至 美元。这个程度,现在还不清楚,其原因是相关小型远端操作员的单值的衰减率(A$),这是以L2,0,1美元绘制的简单简单集成操作器的构成,而Hausdorf时点操作员的软值为 $B ⁇ (H)$(H) 美元) 的非复合操作员的平滑度(L2,2,0,1美元至 美元) 美元。在(a) 数字计算中似乎存在矛盾,这显示了(甚至大美元) 美元运行者通过分解操作员的美元获得的单值的指数衰减率,以及\线断 (b) 如果Hilbert-Smidrial $(Hilal-crialal) $xnial ex) exal-deal-deal-deal exal extime extime a liverstal dexlate) ex ex ex exxlational dexlational a exxl) exxxxial axxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 。