We consider scalar semilinear elliptic PDEs where the nonlinearity is strongly monotone, but only locally Lipschitz continuous. We formulate an adaptive iterative linearized finite element method (AILFEM) which steers the local mesh refinement as well as the iterative linearization of the arising nonlinear discrete equations. To this end, we employ a damped Zarantonello iteration so that, in each step of the algorithm, only a linear Poisson-type equation has to be solved. We prove that the proposed AILFEM strategy guarantees convergence with optimal rates, where rates are understood with respect to the overall computational complexity (i.e., the computational time). Moreover, we formulate and test an adaptive algorithm where also the damping parameter of the Zarantonello iteration is adaptively adjusted. Numerical experiments underline the theoretical findings.
翻译:我们考虑的是非线性极强单质单质但只有局部的Lipschitz 连续的半线性半线性 PDE 。 我们设计了适应性迭代线性有限元素方法( AILFEM ), 用以引导本地网目精细以及新产生的非线性离散方程式的迭代线性线性线性。 为此, 我们使用一个斜体的 Zarantonello 迭代法, 这样, 在算法的每一个步骤中, 只需要解决线性 Poisson 型方程式。 我们证明, 拟议的 AILFEM 战略保证了最佳比率的趋同, 其比率与总体计算复杂性( 即计算时间) 相符合。 此外, 我们制定并测试了适应性算法, 同时也对Zarantonello 的测距值参数进行了适应性调整。 数值实验强调了理论结论 。