This paper considers numerical discretization of a nonlocal conservation law modeling vehicular traffic flows involving nonlocal inter-vehicle interactions. The nonlocal model involves an integral over the range measured by a horizon parameter and it recovers the local Lighthill-Richards-Whitham model as the nonlocal horizon parameter goes to zero. Good numerical schemes for simulating these parameterized nonlocal traffic flow models should be robust with respect to the change of the model parameters but this has not been systematically investigated in the literature. We fill this gap through a careful study of a class of finite volume numerical schemes with suitable discretizations of the nonlocal integral, which include several schemes proposed in the literature and their variants. Our main contributions are to demonstrate the asymptotically compatibility of the schemes, which includes both the uniform convergence of the numerical solutions to the unique solution of nonlocal continuum model for a given positive horizon parameter and the convergence to the unique entropy solution of the local model as the mesh size and the nonlocal horizon parameter go to zero simultaneously. It is shown that with the asymptotically compatibility, the schemes can provide robust numerical computation under the changes of the nonlocal horizon parameter.
翻译:本文考虑了非本地保护法中涉及非本地车辆间相互作用的车辆交通流量模型数字分解问题。 非本地模型涉及一个以地平线参数测量的范围的完整部分,随着非本地地平线参数降至零,它恢复了本地 Lighthill-Richards-Whitham 模型。模拟这些非本地交通流量参数参数参数参数参数参数参数参数参数参数参数参数参数变化的完善数字方法应当强有力,但在文献中尚未对此进行系统调查。我们通过仔细研究一个具有非本地整体部分适当离散的有限数量方案类别来填补这一空白,其中包括文献及其变式中提议的若干方案。我们的主要贡献是展示这些方案在非本地地平线参数下对非本地连续模型独特解决方案的数字解决方案的统一性,以及作为中观大小和非本地地平线参数的本地模型独特通向零的趋同性。它表明,与非本地地平线参数的变化下,这些计划可以提供稳健的数字参数。