We present the problem of two-terminal source coding with Common Sum Reconstruction (CSR). Consider two terminals, each with access to one of two correlated sources. Both terminals want to reconstruct the sum of the two sources under some average distortion constraint, and the reconstructions at two terminals must be identical with high probability. In this paper, we develop inner and outer bounds to the achievable rate distortion region of the CSR problem for a doubly symmetric binary source. We employ existing achievability results for Steinberg's common reconstruction and Wyner-Ziv's source coding with side information problems, and an achievability result for the lossy version of Korner-Marton's modulo-two sum computation problem.
翻译:我们提出了两个终点源的编码问题。 考虑两个终点站, 每个终端可以连接到两个相关源中的一个。 两个终点站都希望在某种平均扭曲限制下重建两个源的总和, 两个终点站的重建必须和高概率相同。 在本文中, 我们开发出一个双对称二进制源的内外部界限, 与 CSR 问题的可实现的速率扭曲区域。 我们使用 Steinberg 的普通重建和 Wyner- Ziv 的源代码编码与侧端信息问题的现有可实现结果, 以及 Korner- Marton 的 Modulo- 2 um 计算问题的损失版本的可实现结果 。