项目名称: OsVTC1与OsAUX1响应水稻耐铵信号cross-talk的分子机制

项目编号: No.31501821

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 农业科学

项目作者: 孙丽

作者单位: 中国科学院南京土壤研究所

项目金额: 22万元

中文摘要: 氮素过量施用导致土壤中铵态氮(NH4+)短期过量积累进而产生高铵毒害,严重影响了作物的正常生长发育,给粮食生产带来风险,因此剖析作物耐铵机制具有十分重要的科学意义和实践价值。但是,目前相关研究主要集中在作物耐铵途径关键因子及其调控机制,而从与作物根系形态相结合的角度,研究根系生长发育与植物耐铵机制之间相互关系的相关分子机制较少。本项目将以水稻耐铵关键基因OsVTC1和根系生长发育的重要调控基因OsAUX1为研究对象,利用转基因及遗传杂交技术,构建OsVTC1 和OsAUX1过表达、单突变及双突变体株系,应用植物营养学、植物生理学、遗传学和基因组学等技术手段研究OsVTC1与OsAUX1响应水稻耐铵信号cross-talk的分子生理遗传机制,寻找可能存在的节点基因,有望为研究植物耐铵机制和氮的高效利用找到新的切入点,对于提高氮肥利用率有重要的理论意义。

中文关键词: 氮效率;信号转导;转录调控;氮高效;根构型

英文摘要: On account of excessive application of nitrogen in soil,ammonium (NH4+) accumulate short-term excessively and produce ammonium toxicity seriously , this affects the normal growth and development and decrease yield of crop seriously. Therefore, to analyze the mechanism of ammonium resistance is of great significance and practical value. However, the current research focuses on the key factors of ammonium resistance pathways and its regulatory mechanisms. There are few studies focusing on the relationship between the development and growth of root and ammonium resistance mechanisms. This project will focus on rice ammonium resistant key gene OsVTC1 and important root growth regulatory genes OsAUX1, build OsVTC1-OE and OsAUX1-OE, osvtc1 and osaux1 mutants and osvtc1 /osaux1 double mutant through transgenic and genetic hybridization, combine with plant nutrition, plant physiology, genetics and genomics research, undercover OsAUX1 and OsVTC1 molecular physiological genetic cross-talk mechanisms in ammonium resistant signal and look for possible node genes. This project will be a new entry point for the study of plant ammonium resistance mechanisms and nitrogen efficient use, and also an important theoretical significance in improving nitrogen use efficiency.

英文关键词: nitrogen efficiency;signal transduction;transcriptional regulation;nitrogen efficient;root architecture

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】基于样例查询机制的在线动作检测
专知会员服务
9+阅读 · 2022年3月23日
专知会员服务
52+阅读 · 2021年10月1日
【WWW2021】基于图层次相关性匹配信号的Ad-hoc 检索
专知会员服务
13+阅读 · 2021年2月25日
专知会员服务
35+阅读 · 2021年2月20日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
40+阅读 · 2020年10月4日
炫技还得是 ROG,ROG 魔刃 X 三模无线游戏鼠标开箱
ZEALER订阅号
0+阅读 · 2022年3月28日
一文读懂 Pytorch 中的 Tensor View 机制
极市平台
0+阅读 · 2022年1月30日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关主题
相关VIP内容
【CVPR2022】基于样例查询机制的在线动作检测
专知会员服务
9+阅读 · 2022年3月23日
专知会员服务
52+阅读 · 2021年10月1日
【WWW2021】基于图层次相关性匹配信号的Ad-hoc 检索
专知会员服务
13+阅读 · 2021年2月25日
专知会员服务
35+阅读 · 2021年2月20日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
40+阅读 · 2020年10月4日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员