We develop new approaches in multi-class settings for constructing proper scoring rules and hinge-like losses and establishing corresponding regret bounds with respect to the zero-one or cost-weighted classification loss. Our construction of losses involves deriving new inverse mappings from a concave generalized entropy to a loss through the use of a convex dissimilarity function related to the multi-distribution $f$-divergence. Moreover, we identify new classes of multi-class proper scoring rules, which also recover and reveal interesting relationships between various composite losses currently in use. We establish new classification regret bounds in general for multi-class proper scoring rules by exploiting the Bregman divergences of the associated generalized entropies, and, as applications, provide simple meaningful regret bounds for two specific classes of proper scoring rules. Finally, we derive new hinge-like convex losses, which are tighter convex extensions than related hinge-like losses and geometrically simpler with fewer non-differentiable edges, while achieving similar regret bounds. We also establish a general classification regret bound for all losses which induce the same generalized entropy as the zero-one loss.


翻译:在多级环境下,我们制定新的方针,以构建适当的评分规则和类似损失,并在零一或成本加权分类损失方面建立相应的遗憾界限。我们的损失构建过程涉及通过使用与多分配(ff$-diverence)相关的相异功能,从一个相形色色从一个相形色色的通俗通则到一个损失产生新的反向映射图。此外,我们确定了新的多级适当评分规则类别,这些类别还恢复并揭示了目前正在使用的各种复合损失之间的令人感兴趣的关系。我们通过利用相关的普惠性亚异种的布雷格曼差异,为多级正确评分规则制定了新的分类遗憾界限,并且作为应用,为两种特定类别的适当评分规则提供了简单的有意义的遗憾界限。最后,我们提出了新的相貌相貌相异的连锁项损失,它们比相近似链条状的损失更为紧凑,而且几何比较简单,而且不易区分的边缘也相近,同时取得了类似的遗憾界限。我们还为所有导致与零one损失相同的通用的对等子损失规定了总的分类。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
161+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员