Machine learning classifiers rely on loss functions for performance evaluation, often on a private (hidden) dataset. Label inference was recently introduced as the problem of reconstructing the ground truth labels of this private dataset from just the (possibly perturbed) loss function values evaluated at chosen prediction vectors, without any other access to the hidden dataset. Existing results have demonstrated this inference is possible on specific loss functions like the cross-entropy loss. In this paper, we introduce the notion of codomain separability to formally study the necessary and sufficient conditions under which label inference is possible from any (noisy) loss function values. Using this notion, we show that for many commonly used loss functions, including multiclass cross-entropy with common activation functions and some Bregman divergence-based losses, it is possible to design label inference attacks for arbitrary noise levels. We demonstrate that these attacks can also be carried out through actual neural network models, and argue, both formally and empirically, the role of finite precision arithmetic in this setting.


翻译:机器学习分类员依靠损失功能进行绩效评估,通常依靠私人(隐蔽)数据集。 Label 推论最近被引入,因为将这一私人数据集的地面真实性标签从选择的预测矢量评估的损失函数值(可能受扰动)重塑为地面真实性标签的问题,而没有其它途径访问隐藏的数据集。现有结果表明,这种推论有可能针对特定的损失函数,如跨热带损失。在本文中,我们引入了共生分离性概念,以便正式研究从任何(隐蔽的)损失函数值中推导出标签的必要和充分条件。我们利用这个概念表明,对于许多常用的损失函数,包括具有共同激活功能的多级交叉性以及一些布雷格曼差异性损失,可以设计任意噪音等级的推论攻击。我们证明,这些攻击也可以通过实际的神经网络模型进行,并正式和实证地说明在这个环境中限定精确性计算的作用。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月9日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员