We consider the problem of sampling from a strongly log-concave density in $\mathbb{R}^d$, and prove an information theoretic lower bound on the number of stochastic gradient queries of the log density needed. Several popular sampling algorithms (including many Markov chain Monte Carlo methods) operate by using stochastic gradients of the log density to generate a sample; our results establish an information theoretic limit for all these algorithms. We show that for every algorithm, there exists a well-conditioned strongly log-concave target density for which the distribution of points generated by the algorithm would be at least $\varepsilon$ away from the target in total variation distance if the number of gradient queries is less than $\Omega(\sigma^2 d/\varepsilon^2)$, where $\sigma^2 d$ is the variance of the stochastic gradient. Our lower bound follows by combining the ideas of Le Cam deficiency routinely used in the comparison of statistical experiments along with standard information theoretic tools used in lower bounding Bayes risk functions. To the best of our knowledge our results provide the first nontrivial dimension-dependent lower bound for this problem.


翻译:我们从强烈的对数密度 $mathbb{R ⁇ d$ 中考虑取样问题,并证明对所需日志密度的随机梯度查询数量的信息理论约束较低。一些流行的抽样算法(包括许多Markov链 Monte Carlo 方法)使用日志密度的随机梯度生成样本;我们的结果为所有这些算法设定了一个信息理论限制。我们显示,对于每一种算法来说,都有一种条件完善的强烈对数目标密度,为此,如果梯度查询数量低于$\Omega(gma_2 d/\varepsilon2美元),则算法生成的点的分布将至少离目标完全变异距离,如果梯度查询数量低于$\Omega(gma_2 d/\varepsilon%2美元),则使用美元作为所有这些算法梯度的差异。我们较低的界限是把统计实验中常用的勒卡姆缺陷概念与标准信息工具结合起来,在降低巴雅斯低风险功能中使用的测算工具结合起来。我们最可靠的知识层面提供了我们最可靠的结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
92+阅读 · 2020年10月22日
专知会员服务
40+阅读 · 2020年9月6日
【Java实现遗传算法】162页pdf,Genetic Algorithms in Java Basics
专知会员服务
44+阅读 · 2020年7月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
92+阅读 · 2020年10月22日
专知会员服务
40+阅读 · 2020年9月6日
【Java实现遗传算法】162页pdf,Genetic Algorithms in Java Basics
专知会员服务
44+阅读 · 2020年7月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员