In this paper we introduce a novel Neural Networks-based approach for approximating solutions to the (2D) incompressible Navier--Stokes equations. Our algorithm uses a Physics-informed Neural Network, that approximates the vorticity based on a loss function that uses a computationally efficient formulation of the Random Vortex dynamics. The neural vorticity estimator is then combined with traditional numerical PDE-solvers for the Poisson equation to compute the velocity field. The main advantage of our method compared to standard Physics-informed Neural Networks is that it strictly enforces physical properties, such as incompressibility or boundary conditions, which might otherwise be hard to guarantee with purely Neural Networks-based approaches.
翻译:暂无翻译