Tracking a car or a person in a city is crucial for urban safety management. How can we complete the task with minimal number of spatiotemporal searches from massive camera records? This paper proposes a strategy named IHMs (Intermediate Searching at Heuristic Moments): each step we figure out which moment is the best to search according to a heuristic indicator, then at that moment search locations one by one in descending order of predicted appearing probabilities, until a search hits; iterate this step until we get the object's current location. Five searching strategies are compared in experiments, and IHMs is validated to be most efficient, which can save up to 1/3 total costs. This result provides an evidence that "searching at intermediate moments can save cost".
翻译:追踪城市中的汽车或人员对于城市安全管理至关重要。 我们怎样才能完成这项任务, 从大型相机记录中进行数量最少的时空搜索? 本文提出一个名为 IHMs( 即时搜索到湿度时段) 的战略: 每一步我们都会发现, 哪个时刻最适合根据超速指数搜索, 然后在那个时刻, 逐个搜索位置, 预测其概率会降低, 直到搜索点击; 在获得天体当前位置之前, 循环这一步骤 。 五个搜索策略在实验中进行了比较, 并被验证为效率最高, 这可以节省三分之一的总成本。 这个结果提供了“ 在中间时刻搜索可以节省成本 ” 的证据 。