We present a convergence analysis of an unconditionally energy-stable first-order semi-discrete numerical scheme designed for a hydrodynamic Q-tensor model, the so-called Beris-Edwards system, based on the Invariant Energy Quadratization Method (IEQ). The model consists of the Navier-Stokes equations for the fluid flow, coupled to the Q-tensor gradient flow describing the liquid crystal molecule alignment. By using the Invariant Energy Quadratization Method, we obtain a linearly implicit scheme, accelerating the computational speed. However, this introduces an auxiliary variable to replace the bulk potential energy and it is a priori unclear whether the reformulated system is equivalent to the Beris-Edward system. In this work, we prove stability properties of the scheme and show its convergence to a weak solution of the coupled liquid crystal system. We also demonstrate the equivalence of the reformulated and original systems in the weak sense.
翻译:我们对一种无条件的能源稳定第一阶半分解数字办法进行了趋同分析,该办法设计为流体动力学Q-电流模型,即所谓的贝里斯-Edwards系统,其依据是变化式能源四分位法(IEQ),该模型由流体流的纳维-斯托克斯方程式组成,与描述液晶分子对齐的Q-10度梯度流相配合。我们通过使用惯性能源四分位法,获得了一个线性隐含的图案,加速了计算速度。然而,这引入了一个辅助变量以取代大量潜在能源,而且事先还不清楚重新拟订的系统是否等同于贝里斯-Edward系统。在这项工作中,我们证明了这个办法的稳定性,并表明它与结合的液体晶体系统较弱的溶液溶解方法相趋同。我们还展示了弱意义上的重制和原始系统的等同性。