This work presents a novel, inference-based approach to the distributed and cooperative flocking control of aerial robot swarms. The proposed method stems from the Unmanned Aerial Vehicle (UAV) dynamics by limiting the latent set to the robots' feasible action space, thus preventing any unattainable control inputs from being produced and leading to smooth flocking behavior. By modeling the inter-agent relationships using a pairwise energy function, we show that interacting robot swarms constitute a Markov Random Field. Our algorithm builds on the Mean-Field Approximation and incorporates the collective behavioral rules: cohesion, separation, and velocity alignment. We follow a distributed control scheme and show that our method can control a swarm of UAVs to a formation and velocity consensus with real-time collision avoidance. We validate the proposed method with physical UAVs and high-fidelity simulation experiments.
翻译:这项工作为分散和合作地控制空中机器人群提供了一种新型的、基于推论的方法,对分布式的和合作性地控制空中机器人群群采取了一种新颖的、基于推论的方法。拟议的方法源于无人驾驶航空飞行器(UAV)的动态动态,限制机器人可行的行动空间的潜伏,从而防止产生任何无法实现的控制投入,并导致顺利地聚集行为。通过使用对称能源功能模拟机构间关系,我们显示互动机器人群构成一个Markov随机场。我们的算法建立在平均场对称的基础上,并纳入了集体行为规则:凝聚力、分离和速度对齐。我们遵循了一种分布式控制计划,并表明我们的方法可以控制着大批无人驾驶飞行器的形成和速度共识,同时避免实时碰撞。我们用实际的UAV和高纤维模拟实验来验证拟议的方法。