This paper studies the $J$-method of [E. Jarlebring, S. Kvaal, W. Michiels. SIAM J. Sci. Comput. 36-4:A1978-A2001, 2014] for nonlinear eigenvector problems in a general Hilbert space framework. This is the basis for variational discretization techniques and a mesh-independent numerical analysis. A simple modification of the method mimics an energy-decreasing discrete gradient flow. In the case of the Gross-Pitaevskii eigenvalue problem, we prove global convergence towards an eigenfunction for a damped version of the $J$-method. More importantly, when the iterations are sufficiently close to an eigenfunction, the damping can be switched off and we recover a local linear convergence rate previously known from the discrete setting. This quantitative convergence analysis is closely connected to the~$J$-method's unique feature of sensitivity with respect to spectral shifts. Contrary to classical gradient flows, this allows both the selective approximation of excited states as well as the amplification of convergence beyond linear rates in the spirit of the Rayleigh quotient iteration for linear eigenvalue problems. These advantageous convergence properties are demonstrated in a series of numerical experiments involving exponentially localized states under disorder potentials and vortex lattices in rotating traps.


翻译:本文研究[E. Jarlebring, S. Kvaal, W. Michiels, W. Michiels. Sci. SIAM J. Sci. Comput. 36-4: A1978-A2001, 2014] 非线性肝素问题在一般Hilbert空间框架中的计算方法。 这是差异分解技术和网状独立数字分析的基础。 方法的简单修改模仿了能量分流的离散性梯度流。 在Gross- Pitaevskii eigenvalval 问题中,我们证明全球趋同到一个螺旋型版本的美元- compt. 36-4: A1978- A2001, 2014] 。 更重要的是,当迭代值足够接近于一个机能功能时, 阻断可以被关闭, 我们恢复以前从离散环境中知道的本地线性趋同率。 这种定量趋同分析与光变异性特征的独特特征。 与古典梯度流动相反,这既允许全球趋同性地接近,也使得高额水平的不断趋同,在高水平上,也意味着,在高水平上,在高水平上变正值的变。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月10日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员