We propose and analyse an augmented mixed finite element method for the Oseen equations written in terms of velocity, vorticity, and pressure with non-constant viscosity and homogeneous Dirichlet boundary condition for the velocity. The weak formulation includes least-squares terms arising from the constitutive equation and from the incompressibility condition, and we show that it satisfies the hypotheses of the Babu\vska-Brezzi theory. Repeating the arguments of the continuous analysis, the stability and solvability of the discrete problem are established. The method is suited for any Stokes inf-sup stable finite element pair for velocity and pressure, while for vorticity any generic discrete space (of arbitrary order) can be used. A priori and a posteriori error estimates are derived using two specific families of discrete subspaces. Finally, we provide a set of numerical tests illustrating the behaviour of the scheme, verifying the theoretical convergence rates, and showing the performance of the adaptive algorithm guided by residual a posteriori error estimation.
翻译:我们提出并分析以速度、多寡和压力、不连续的粘度和均匀的狄里赫莱边界条件为速度的Osearn方程式的扩大混合有限要素方法。弱方程式包括构成方程式和不压缩条件产生的最不平方术语,我们表明它符合Babuvska-Brezzi理论的假设。重复连续分析的论据,确定离散问题的稳定性和可溶性。这种方法适合任何在速度和压力方面不连续的固定有限要素组合,而对于不透明者则可以使用任何通用的离散空间(任意顺序),利用离散子空间的两个特定组合得出先行和后行误差估计数。最后,我们提供一组数字测试,说明计划的行为,核实理论上的趋同率,并显示后期误差估计所引导的适应算法的性能。