The multigrid-reduction-in-time (MGRIT) technique has proven to be successful in achieving higher run-time speedup by exploiting parallelism in time. The goal of this article is to develop and analyze a MGRIT algorithm, using FCF-relaxation with time-dependent time-grid propagators, to seek the finite element approximations of unsteady fractional Laplacian problems. The multigrid with line smoother proposed in [L. Chen, R. H. Nochetto, E. Ot{\'a}rola, A. J. Salgado, Math. Comp. 85 (2016) 2583--2607] is chosen to be the spatial solver. Motivated by [B. S. Southworth, SIAM J. Matrix Anal. Appl. 40 (2019) 564--608], we provide a new temporal eigenvalue approximation property and then deduce a generalized two-level convergence theory which removes the previous unitary diagonalization assumption on the fine and coarse time-grid propagators required in [X. Q. Yue, S. Shu, X. W. Xu, W. P. Bu, K. J. Pan, Comput. Math. Appl. 78 (2019) 3471--3484]. Numerical computations are included to confirm the theoretical predictions and demonstrate the sharpness of the derived convergence upper bound.


翻译:事实证明,通过在时间上利用平行做法,多格减少时间(MGRIIT)技术在加快运行速度方面取得了成功。本条款的目的是利用时间依赖的时间网传播器,利用FCF-放松时间-时间网传播器,开发并分析MGRIIT算法,以寻找非稳定分数拉平面问题的有限元素近似值。[L.陈、R.H.诺切托、E.奥特拉罗拉、A.J.萨尔加多、Comp. 85(2016) 2583-32607],以开发并分析MGRIIT算法。[B.S.Southorworth、SIAM J.Mmmmmmal-Anal. Appl. 40 (2019, 564-608),我们提供了一个新的时间值近似值近似值近属性,然后推导出一种普遍的两级趋同理论,该理论将[X.Q. Shu. S. S. S. Shu. X. N. S. S. S. R. S. S. P. C. C. P.

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员