The multigrid-reduction-in-time (MGRIT) technique has proven to be successful in achieving higher run-time speedup by exploiting parallelism in time. The goal of this article is to develop and analyze a MGRIT algorithm, using FCF-relaxation with time-dependent time-grid propagators, to seek the finite element approximations of unsteady fractional Laplacian problems. The multigrid with line smoother proposed in [L. Chen, R. H. Nochetto, E. Ot{\'a}rola, A. J. Salgado, Math. Comp. 85 (2016) 2583--2607] is chosen to be the spatial solver. Motivated by [B. S. Southworth, SIAM J. Matrix Anal. Appl. 40 (2019) 564--608], we provide a new temporal eigenvalue approximation property and then deduce a generalized two-level convergence theory which removes the previous unitary diagonalization assumption on the fine and coarse time-grid propagators required in [X. Q. Yue, S. Shu, X. W. Xu, W. P. Bu, K. J. Pan, Comput. Math. Appl. 78 (2019) 3471--3484]. Numerical computations are included to confirm the theoretical predictions and demonstrate the sharpness of the derived convergence upper bound.
翻译:事实证明,通过在时间上利用平行做法,多格减少时间(MGRIIT)技术在加快运行速度方面取得了成功。本条款的目的是利用时间依赖的时间网传播器,利用FCF-放松时间-时间网传播器,开发并分析MGRIIT算法,以寻找非稳定分数拉平面问题的有限元素近似值。[L.陈、R.H.诺切托、E.奥特拉罗拉、A.J.萨尔加多、Comp. 85(2016) 2583-32607],以开发并分析MGRIIT算法。[B.S.Southorworth、SIAM J.Mmmmmmal-Anal. Appl. 40 (2019, 564-608),我们提供了一个新的时间值近似值近似值近属性,然后推导出一种普遍的两级趋同理论,该理论将[X.Q. Shu. S. S. S. Shu. X. N. S. S. S. R. S. S. P. C. C. P.