Real continuous submodular functions, as a generalization of the corresponding discrete notion to the continuous domain, gained considerable attention recently. The analog notion for entropy functions requires additional properties: a real function defined on the non-negative orthant of $\mathbb R^n$ is entropy-like (EL) if it is submodular, takes zero at zero, non-decreasing, and has the Diminishing Returns property. Motivated by problems concerning the Shannon complexity of multipartite secret sharing, a special case of the following general optimization problem is considered: find the minimal cost of those EL functions which satisfy certain constraints. In our special case the cost of an EL function is the maximal value of the $n$ partial derivatives at zero. Another possibility could be the supremum of the function range. The constraints are specified by a smooth bounded surface $S$ cutting off a downward closed subset. An EL function is feasible if at the internal points of $S$ the left and right partial derivatives of the function differ by at least one. A general lower bound for the minimal cost is given in terms of the normals of the surface $S$. The bound is tight when $S$ is linear. In the two-dimensional case the same bound is tight for convex or concave $S$. It is shown that the optimal EL function is not necessarily unique. The paper concludes with several open problems.


翻译:相对连续的子模块功能,作为对连续域的相应离散概念的概括性,最近引起了相当的注意。对星盘函数的类似概念要求额外的属性:在$\mathbb R ⁇ n$的非负或分数上定义的真正函数,如果是子模块,零为零,非递减,并具有递减后返回属性,则类似(EL) 。受多方秘密共享的香农复杂性问题驱动,以下一般优化问题的特例得到考虑:找到那些满足某些限制的EL函数的最低成本。在我们的特殊情况下,EL函数的成本是美元部分衍生物的最大值为零。另一种可能性是函数范围的上下限值。一个平滑的捆绑表面 $S 将关闭一个向下封闭的子。如果在美元的内部点,则可以考虑到以下的一般优化优化问题:找到满足某些限制条件的EL函数的最小成本。对于欧元表面来说,一般的下限值为美元,对于硬面的硬面值为两个硬面,通常的硬面值为美元。对于硬面的硬面的硬面,一般的下框值是硬面的硬面值是双面的硬面的硬面的硬面的硬面的。在两个硬面的硬面的硬面是显示的硬面的平的硬面的硬面。在两个的平的平的平的平的平面是相同的。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员