We explore the class of problems where a central planner needs to select a subset of agents, each with different quality and cost. The planner wants to maximize its utility while ensuring that the average quality of the selected agents is above a certain threshold. When the agents' quality is known, we formulate our problem as an integer linear program (ILP) and propose a deterministic algorithm, namely \dpss\ that provides an exact solution to our ILP. We then consider the setting when the qualities of the agents are unknown. We model this as a Multi-Arm Bandit (MAB) problem and propose \newalgo\ to learn the qualities over multiple rounds. We show that after a certain number of rounds, $\tau$, \newalgo\ outputs a subset of agents that satisfy the average quality constraint with a high probability. Next, we provide bounds on $\tau$ and prove that after $\tau$ rounds, the algorithm incurs a regret of $O(\ln T)$, where $T$ is the total number of rounds. We further illustrate the efficacy of \newalgo\ through simulations. To overcome the computational limitations of \dpss, we propose a polynomial-time greedy algorithm, namely \greedy, that provides an approximate solution to our ILP. We also compare the performance of \dpss\ and \greedy\ through experiments.


翻译:我们探讨中央规划员需要选择一组代理人,每个代理人质量和成本不同。 计划员希望最大限度地扩大其效用, 同时确保所选代理人的平均质量超过某一阈值。 当知道代理人的质量时, 我们将问题发展成一个整数线性程序( ILP), 并提议一个确定性算法, 即\ dps\ 提供我们 ILP 的确切解决方案。 然后当代理员的品质未知时, 我们再考虑它的设置。 我们把它模拟为多Arm Bandit (MAB) 问题, 并提议\ newalgo\ 来学习多轮的品质。 我们进一步展示了在某轮后, $tau,\ tau,\ nnewalgo\ 输出出一组能满足平均质量限制的代理人。 下一步我们提供$tau, 并证明在美元回合后, 算出我们通过美元=P$( $) 和美元( t$) 的比较结果, 并提议在多轮数中学习质量 。 我们进一步说明在数回合中, 也就是Nevalgo\\\\ imalalalal 的计算结果, imalalationalalalalal dalbalbalbalbalation 的效能的效能, y ex ex ex ex ex exalationalations expalations a calations a cald ex ex exbalations ex ex expalations expalation ex ex extracumentalmentalations ex ex。

0
下载
关闭预览

相关内容

归纳逻辑程序设计(ILP)是机器学习的一个分支,它依赖于逻辑程序作为一种统一的表示语言来表达例子、背景知识和假设。基于一阶逻辑的ILP具有很强的表示形式,为多关系学习和数据挖掘提供了一种很好的方法。International Conference on Inductive Logic Programming系列始于1991年,是学习结构化或半结构化关系数据的首要国际论坛。最初专注于逻辑程序的归纳,多年来,它大大扩展了研究范围,并欢迎在逻辑学习、多关系数据挖掘、统计关系学习、图形和树挖掘等各个方面作出贡献,学习其他(非命题)基于逻辑的知识表示框架,探索统计学习和其他概率方法的交叉点。官网链接:https://ilp2019.org/
专知会员服务
52+阅读 · 2020年9月7日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员