The abundant semi-structured data on the Web, such as HTML-based tables and lists, provide commercial search engines a rich information source for question answering (QA). Different from plain text passages in Web documents, Web tables and lists have inherent structures, which carry semantic correlations among various elements in tables and lists. Many existing studies treat tables and lists as flat documents with pieces of text and do not make good use of semantic information hidden in structures. In this paper, we propose a novel graph representation of Web tables and lists based on a systematic categorization of the components in semi-structured data as well as their relations. We also develop pre-training and reasoning techniques on the graph model for the QA task. Extensive experiments on several real datasets collected from a commercial engine verify the effectiveness of our approach. Our method improves F1 score by 3.90 points over the state-of-the-art baselines.
翻译:互联网上丰富的半结构数据,如基于HTML的表格和列表,为商业搜索引擎提供了丰富的回答问题的信息来源(QA)。与网络文件中的纯文本段落不同,网络表格和列表有内在结构,其中含有表格和列表中各元素之间的语义相关性。许多现有研究将表格和列表作为带有文本的平板文档处理,没有很好地利用结构中隐藏的语义信息。在本文件中,我们根据对半结构数据组成部分及其关系的系统分类,提出了新的网络表格和列表图表图示。我们还开发了关于QA任务的图表模型的预培训和推理技术。对从商业引擎收集的几套真实数据集进行了广泛的实验,以核实我们的方法的有效性。我们的方法将F1的得分比比最新基线增加了3.90分。