Structured queries expressed in languages (such as SQL, SPARQL, or XQuery) offer a convenient and explicit way for users to express their information needs for a number of tasks. In this work, we present an approach to answer these directly over text data without storing results in a database. We specifically look at the case of knowledge bases where queries are over entities and the relations between them. Our approach combines distributed query answering (e.g. Triple Pattern Fragments) with models built for extractive question answering. Importantly, by applying distributed querying answering we are able to simplify the model learning problem. We train models for a large portion (572) of the relations within Wikidata and achieve an average 0.70 F1 measure across all models. We also present a systematic method to construct the necessary training data for this task from knowledge graphs and describe a prototype implementation.
翻译:以语言(如SQL、SPARQL或XQuery)表达的结构性查询为用户表达对若干任务的信息需要提供了方便和明确的方式。在这项工作中,我们提出了一个直接通过文本数据回答的方法,而没有在数据库中储存结果。我们具体研究了对实体及其相互关系的查询的知识基础的案例。我们的方法是将分散的查询回答(如三样式的碎片)与为采掘问题回答而建的模型结合起来。重要的是,通过应用分散的查询回答,我们可以简化示范学习问题。我们为维基数据内部的大部分关系(572)培训模型,在所有模型中实现平均0.70 F1措施。我们还提出了一个系统的方法,用知识图表构建这项任务所需的培训数据,并描述一个原型执行模式。