Visual Question answering is a challenging problem requiring a combination of concepts from Computer Vision and Natural Language Processing. Most existing approaches use a two streams strategy, computing image and question features that are consequently merged using a variety of techniques. Nonetheless, very few rely on higher level image representations, which allow to capture semantic and spatial relationships. In this paper, we propose a novel graph-based approach for Visual Question Answering. Our method combines a graph learner module, which learns a question specific graph representation of the input image, with the recent concept of graph convolutions, aiming to learn image representations that capture question specific interactions. We test our approach on the VQA v2 dataset using a simple baseline architecture enhanced by the proposed graph learner module. We obtain state of the art results with 65.77% accuracy and demonstrate the interpretability of the proposed method.


翻译:视觉问题解答是一个具有挑战性的问题,需要将计算机视觉和自然语言处理的概念结合起来。大多数现有方法都使用两种流战略,即计算图像和问题特征,然后使用多种技术将其合并。然而,很少有人依靠更高层次的图像显示,从而能够捕捉语义和空间关系。在本文中,我们提出了基于新颖图表的视觉问题解答方法。我们的方法将一个图解学习器模块结合起来,该模块学习输入图像的具体图解,与最近的图解组合概念相结合,目的是学习能够捕捉特定互动的图解。我们用一个得到拟议图解学习器模块强化的简单基线结构测试我们关于VQA v2数据集的方法。我们用65.77%的准确率获取最新艺术结果,并展示拟议方法的可解释性。

4
下载
关闭预览

相关内容

视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务。这一任务的定义如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻译为中文:一个VQA系统以一张图片和一个关于这张图片形式自由、开放式的自然语言问题作为输入,以生成一条自然语言答案作为输出。简单来说,VQA就是给定的图片进行问答。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
近期必读的7篇 CVPR 2019【视觉问答】相关论文和代码
专知会员服务
36+阅读 · 2020年1月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员