Answering complex questions is a time-consuming activity for humans that requires reasoning and integration of information. Recent work on reading comprehension made headway in answering simple questions, but tackling complex questions is still an ongoing research challenge. Conversely, semantic parsers have been successful at handling compositionality, but only when the information resides in a target knowledge-base. In this paper, we present a novel framework for answering broad and complex questions, assuming answering simple questions is possible using a search engine and a reading comprehension model. We propose to decompose complex questions into a sequence of simple questions, and compute the final answer from the sequence of answers. To illustrate the viability of our approach, we create a new dataset of complex questions, ComplexWebQuestions, and present a model that decomposes questions and interacts with the web to compute an answer. We empirically demonstrate that question decomposition improves performance from 20.8 precision@1 to 27.5 precision@1 on this new dataset.


翻译:回答复杂的问题对于人类来说是一项耗时的活动,需要推理和整合信息。最近关于阅读理解的工作在回答简单的问题方面取得了进展,但处理复杂的问题仍然是一项持续的研究挑战。相反,语义分析者在处理组成方面是成功的,但只有在信息存放在目标知识库中时才成功。在本文中,我们提出了一个用于回答广泛和复杂的问题的新框架,假设使用搜索引擎和阅读理解模型回答简单的问题是可能的。我们提议将复杂的问题分解成一系列简单的问题,并从回答的顺序中计算出最后答案。为了说明我们的方法的可行性,我们创建了一套新的复杂问题(复杂WebQisses)数据集,并展示了一个解析问题和与网络互动的模型,以解析答案。我们从经验上证明,问题的解析使这个新数据集的性能从20.8精确度@1到27.5精确度@1得到改进。

5
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
190+阅读 · 2020年4月19日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
14+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
12+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
34+阅读 · 2019年1月3日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
论文浅尝 | Question Answering over Freebase
开放知识图谱
17+阅读 · 2018年1月9日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
12+阅读 · 2017年11月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
3+阅读 · 2018年11月29日
Knowledge Based Machine Reading Comprehension
Arxiv
3+阅读 · 2018年9月12日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
190+阅读 · 2020年4月19日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
14+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
12+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
34+阅读 · 2019年1月3日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
论文浅尝 | Question Answering over Freebase
开放知识图谱
17+阅读 · 2018年1月9日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
12+阅读 · 2017年11月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员