Recently, Man\v{c}inska and Roberson proved that two graphs $G$ and $G'$ are quantum isomorphic if and only if they admit the same number of homomorphisms from all planar graphs. We extend this result to planar #CSP with any pair of sets $\mathcal{F}$ and $\mathcal{F}'$ of real-valued, arbitrary-arity constraint functions. Graph homomorphism is the special case where each of $\mathcal{F}$ and $\mathcal{F}'$ contains a single symmetric 0-1-valued binary constraint function. Our treatment uses the framework of planar Holant problems. To prove that quantum isomorphic constraint function sets give the same value on any planar #CSP instance, we apply a novel form of holographic transformation of Valiant, using the quantum permutation matrix $\mathcal{U}$ defining the quantum isomorphism. Due to the noncommutativity of $\mathcal{U}$'s entries, it turns out that this form of holographic transformation is only applicable to planar Holant. To prove the converse, we introduce the quantum automorphism group Qut$(\mathcal{F})$ of a set of constraint functions $\mathcal{F}$, and characterize the intertwiners of Qut$(\mathcal{F})$ as the signature matrices of planar Holant$(\mathcal{F}\,|\,\mathcal{EQ})$ quantum gadgets. Then we define a new notion of (projective) connectivity for constraint functions and reduce arity while preserving the quantum automorphism group. Finally, to address the challenges posed by generalizing from 0-1 valued to real-valued constraint functions, we adapt a technique of Lov\'asz in the classical setting for isomorphisms of real-weighted graphs to the setting of quantum isomorphisms.
翻译:最近, Man\ v{ c} inska 和 Roberson 证明, 两张图表 ${Gmode{G$} 和 $G$ 都属于量值, 如果它们从所有平面图中接受相同数量的同质性, 并且只有它们承认相同数量的同质性。 我们把这个结果推广到 平面# CSP 和任何一对的 $\ mathcal{F} 和 $\ mathcal} 和 $G$ 美元是量值 {Gal{Gal{F} 和 美元是量值 量值的量值 。 以量值表表表表表表表表表表表表表表表显示的是 美元=美元 。 以量值表表表示量值 ==== 量值调值 。 由量表表显示的是, 量表表显示的是, 量基数值= 美元 美元 内值 内值 。