For a probability P in $R^d$ its center outward distribution function $F_{\pm}$, introduced in Chernozhukov et al. (2017) and Hallin et al. (2021), is a new and successful concept of multivariate distribution function based on mass transportation theory. This work proves, for a probability P with density locally bounded away from zero and infinity in its support, the continuity of the center-outward map on the interior of the support of P and the continuity of its inverse, the quantile, $Q_{\pm}$. This relaxes the convexity assumption in del Barrio et al. (2020). Some important consequences of this continuity are Glivenko-Cantelli type theorems and characterisation of weak convergence by the stability of the center-outward map.
翻译:非凸域中心外分布函数的正则性
翻译后的摘要:
对于概率$P$在$R^d$中,它的中心外分布函数$F_{\pm}$是一个基于质量传输理论的新的成功的多元分布函数概念,由Chernozhukov等人(2017)和Hallin等人(2021)提出。本文证明了,对于一个具有局部有界密度且在其支持集合中远离零点和无穷大的概率$P$,中心外映射在$P$的支持集合内部的连续性以及其逆变换,分位数$Q_{\pm}$的连续性。这放宽了del Barrio等人(2020)中的凸性假设。这种连续性的一些重要后果是格利文科-坎特利型定理以及通过中心外映射的稳定性来表征弱收敛性。