We study the problem of learning a Hamiltonian $H$ to precision $\varepsilon$, supposing we are given copies of its Gibbs state $\rho=\exp(-\beta H)/\operatorname{Tr}(\exp(-\beta H))$ at a known inverse temperature $\beta$. Anshu, Arunachalam, Kuwahara, and Soleimanifar (Nature Physics, 2021, arXiv:2004.07266) recently studied the sample complexity (number of copies of $\rho$ needed) of this problem for geometrically local $N$-qubit Hamiltonians. In the high-temperature (low $\beta$) regime, their algorithm has sample complexity poly$(N, 1/\beta,1/\varepsilon)$ and can be implemented with polynomial, but suboptimal, time complexity. In this paper, we study the same question for a more general class of Hamiltonians. We show how to learn the coefficients of a Hamiltonian to error $\varepsilon$ with sample complexity $S = O(\log N/(\beta\varepsilon)^{2})$ and time complexity linear in the sample size, $O(S N)$. Furthermore, we prove a matching lower bound showing that our algorithm's sample complexity is optimal, and hence our time complexity is also optimal. In the appendix, we show that virtually the same algorithm can be used to learn $H$ from a real-time evolution unitary $e^{-it H}$ in a small $t$ regime with similar sample and time complexity.


翻译:我们研究的是学习汉密尔顿式美元来精确纳普西隆美元的问题。 假设我们得到了Gibbs State $\rho<unk> exp (-\beta H)/\operatorname{Tr} (\\\\\\beta H)$) 在已知的反温 $\beta美元。 安苏、 阿鲁纳沙拉姆、 库瓦哈拉 和苏莱曼尼法( 自然物理, 2021, arxiv: 2004.07266) 最近研究过这一问题的复杂度( 需要的美元) 。 在高温( 低价( $\beta) 制度下, 他们的算法具有复杂度( N, 1/\beta, 1/\ varepsilon) 美元, 并且可以用多币制实施, 但是不最优, 时间的复杂性。 在本文中, 我们研究一个更普通的汉密尔顿式类别。 我们展示如何从汉密尔顿- 美元 美元 的系数 和 美元 美元 美元 正在用一个更低的 时间- centreal imcreal exmlate y exmlate y ex ex exmlatexx 。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
81+阅读 · 2021年12月9日
专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
81+阅读 · 2021年12月9日
专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员