We study the problem of learning a Hamiltonian $H$ to precision $\varepsilon$, supposing we are given copies of its Gibbs state $\rho=\exp(-\beta H)/\operatorname{Tr}(\exp(-\beta H))$ at a known inverse temperature $\beta$. Anshu, Arunachalam, Kuwahara, and Soleimanifar (Nature Physics, 2021, arXiv:2004.07266) recently studied the sample complexity (number of copies of $\rho$ needed) of this problem for geometrically local $N$-qubit Hamiltonians. In the high-temperature (low $\beta$) regime, their algorithm has sample complexity poly$(N, 1/\beta,1/\varepsilon)$ and can be implemented with polynomial, but suboptimal, time complexity. In this paper, we study the same question for a more general class of Hamiltonians. We show how to learn the coefficients of a Hamiltonian to error $\varepsilon$ with sample complexity $S = O(\log N/(\beta\varepsilon)^{2})$ and time complexity linear in the sample size, $O(S N)$. Furthermore, we prove a matching lower bound showing that our algorithm's sample complexity is optimal, and hence our time complexity is also optimal. In the appendix, we show that virtually the same algorithm can be used to learn $H$ from a real-time evolution unitary $e^{-it H}$ in a small $t$ regime with similar sample and time complexity.
翻译:我们研究的是学习汉密尔顿式美元来精确纳普西隆美元的问题。 假设我们得到了Gibbs State $\rho<unk> exp (-\beta H)/\operatorname{Tr} (\\\\\\beta H)$) 在已知的反温 $\beta美元。 安苏、 阿鲁纳沙拉姆、 库瓦哈拉 和苏莱曼尼法( 自然物理, 2021, arxiv: 2004.07266) 最近研究过这一问题的复杂度( 需要的美元) 。 在高温( 低价( $\beta) 制度下, 他们的算法具有复杂度( N, 1/\beta, 1/\ varepsilon) 美元, 并且可以用多币制实施, 但是不最优, 时间的复杂性。 在本文中, 我们研究一个更普通的汉密尔顿式类别。 我们展示如何从汉密尔顿- 美元 美元 的系数 和 美元 美元 美元 正在用一个更低的 时间- centreal imcreal exmlate y exmlate y ex ex exmlatexx 。</s>