I propose a novel approach for nonlinear Logistic regression using a two-layer neural network (NN) model structure with hierarchical priors on the network weights. I present a hybrid of expectation propagation called Variational Expectation Propagation approach (VEP) for approximate integration over the posterior distribution of the weights, the hierarchical scale parameters of the priors and zeta. Using a factorized posterior approximation I derive a computationally efficient algorithm, whose complexity scales similarly to an ensemble of independent sparse logistic models. The approach can be extended beyond standard activation functions and NN model structures to form flexible nonlinear binary predictors from multiple sparse linear models. I consider a hierarchical Bayesian model with logistic regression likelihood and a Gaussian prior distribution over the parameters called weights and hyperparameters. I work in the perspective of E step and M step for computing the approximating posterior and updating the parameters using the computed posterior respectively.
翻译:我提出一种非线性后勤回归的新办法,采用双层神经网络模型结构,在网络重量上具有等级前缀。我介绍了一种混合的预期传播方法,称为变式期望推进法(VEP),用于在重量的后座分布、前辈和兹塔的等级尺度参数上大致整合。我使用一种因素化的后座近距离近似法,得出一种计算效率高的算法,其复杂性与独立的稀释后勤模型的组合相类似。这个方法可以扩大到标准激活功能和NNN模型结构之外,以形成多种分散线性模型的灵活的非线性非线性二进制预测器。我考虑一种具有后勤回归可能性的等级巴伊斯模型和高斯先前分布在称为重量和超参数的参数上的参数。我从E级和M级的角度分别使用计算亚齐化后方位参数并更新参数。我从E级和M级的角度开展工作。</s>