We consider so-called univariate unlinked (sometimes ``decoupled,'' or ``shuffled'') regression when the unknown regression curve is monotone. In standard monotone regression, one observes a pair $(X,Y)$ where a response $Y$ is linked to a covariate $X$ through the model $Y= m_0(X) + \epsilon$, with $m_0$ the (unknown) monotone regression function and $\epsilon$ the unobserved error (assumed to be independent of $X$). In the unlinked regression setting one gets only to observe a vector of realizations from both the response $Y$ and from the covariate $X$ where now $Y \stackrel{d}{=} m_0(X) + \epsilon$. There is no (observed) pairing of $X$ and $Y$. Despite this, it is actually still possible to derive a consistent non-parametric estimator of $m_0$ under the assumption of monotonicity of $m_0$ and knowledge of the distribution of the noise $\epsilon$. In this paper, we establish an upper bound on the rate of convergence of such an estimator under minimal assumption on the distribution of the covariate $X$. We discuss extensions to the case in which the distribution of the noise is unknown. We develop a second order algorithm for its computation, and we demonstrate its use on synthetic data. Finally, we apply our method (in a fully data driven way, without knowledge of the error distribution) on longitudinal data from the US Consumer Expenditure Survey.


翻译:我们认为所谓的unariate univariet 是不相关的( 有时在未知的回归曲线为单调时“ 脱钩 ”, “ ” 或“ 折叠 ” ) 回归。 在标准的单调回归中, 在标准单调回归中, 一个人看到一对一美元( X, Y) 的响应通过模型( Y= m_ 0( X) +\ epsilon$) 与共变美元挂钩的一对一对一美元( X, 美元) 。 在( 未知的) 单调( 单调) 回归功能和 $\ eepsilon 的未观察到的错误( 假设不受美元驱动 ) 。 在不相悖的回归中, 将一个实现的矢量( $_ 0 ) 和 美元 美元 的递增值连接成一对一对一美元 。 在假设 美元 美元 美元 中, 我们的递增量 数据 的分布方式是 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
Arxiv
0+阅读 · 2021年9月28日
Arxiv
0+阅读 · 2021年9月26日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
Top
微信扫码咨询专知VIP会员