Predictive inference under a general regression setting is gaining more interest in the big-data era. In terms of going beyond point prediction to develop prediction intervals, two main threads of development are conformal prediction and Model-free prediction. Recently, \cite{distributionalconformal} proposed a new conformal prediction approach exploiting the same uniformization procedure as in the Model-free Bootstrap of \cite{Politis2015}. Hence, it is of interest to compare and further investigate the performance of the two methods. In the paper at hand, we contrast the two approaches via theoretical analysis and numerical experiments with a focus on conditional coverage of prediction intervals. We discuss suitable scenarios for applying each algorithm, underscore the importance of conditional vs.~unconditional coverage, and show that, under mild conditions, the Model-free bootstrap yields prediction intervals with guaranteed better conditional coverage compared to quantile estimation. We also extend the concept of `pertinence' of prediction intervals in \cite{Politis2015} to the nonparametric regression setting, and give concrete examples where its importance emerges under finite sample scenarios. Finally, we define the new notion of `conjecture testing' that is the analog of hypothesis testing as applied to the prediction problem; we also devise a modified conformal score to allow conformal prediction to handle one-sided `conjecture tests', and compare to the Model-free bootstrap.


翻译:在总体回归环境下,对大数据时代的预测预测越来越感兴趣。在超越点预测而发展预测间隔方面,两条主要发展线是符合逻辑的预测和无模型的预测。最近,\cite{分布式正正正方}提出了一种新的一致预测方法,利用与无模型(cite{Politis2015})一样的统一化程序。因此,比较和进一步调查两种方法的性能是有益的。在手头的文件中,我们通过理论分析和数字实验来比较这两种方法,重点是有条件的预测间隔。我们讨论应用每种算法的合适情景,强调有条件与~无条件覆盖的重要性,并表明,在温和的条件下,无模型的靴带产生预测间隔,保证与昆虫估计相比,更有条件的覆盖范围。因此,我们还将自由处理(cite{Pollintis2015}的预测间隔的“相关性”概念扩大到非参数回归设定,并举具体例子说明在固定抽样假设情景下显示其重要性。最后,我们将“模型”与“不附带条件的”的预测测试,我们将“调整的”概念扩大到“模拟的”测试。最后,我们将“修正的”定义了“模拟的“模拟”的“测试”的”的“升级的”的“升级的”的“测试,我们将“升级的”的”概念扩大到的“升级的“的”的”的“升级的”的”的“升级的“的”的”的”的“升级的“的”的”的“升级的“升级的“升级的”的“升级的“升级的”的”的”的”的“的”的“的”的”的“测试的“测试的测试的“的“的”的”的”的“升级的“的“升级的“的“的”的“的”的”的”的”的”的”的”的“升级的“升级的“的”的”的”的”概念扩大到。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月16日
Arxiv
0+阅读 · 2021年11月16日
Arxiv
0+阅读 · 2021年11月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员