Hierarchical models represent a challenging setting for inference algorithms. MCMC methods struggle to scale to large models with many local variables and observations, and variational inference (VI) may fail to provide accurate approximations due to the use of simple variational families. Some variational methods (e.g. importance weighted VI) integrate Monte Carlo methods to give better accuracy, but these tend to be unsuitable for hierarchical models, as they do not allow for subsampling and their performance tends to degrade for high dimensional models. We propose a new family of variational bounds for hierarchical models, based on the application of tightening methods (e.g. importance weighting) separately for each group of local random variables. We show that our approach naturally allows the use of subsampling to get unbiased gradients, and that it fully leverages the power of methods that build tighter lower bounds by applying them independently in lower dimensional spaces, leading to better results and more accurate posterior approximations than relevant baselines.
翻译:等级模型代表了推算算法的艰难环境。 MCMC方法试图以许多本地变量和观察方法向大型模型扩展,而由于使用简单的变式家庭,变式推论(VI)可能无法提供准确的近似值。 某些变式方法(例如,重要性加权六)结合了蒙特卡洛方法,以提供更好的准确性,但这些方法往往不适合等级模型,因为它们不允许进行子抽样,而且其性能往往会降低高维模型的性能。 我们提议在对每组本地随机变量分别应用收紧方法(例如,重量加权)的基础上,为等级模型建立一个新的变式界限。 我们表明,我们的方法自然允许使用次抽样来获得不偏斜的梯度,并且充分利用了在较低空间独立应用更近似于相关基线的更近似值的方法的力量。