We investigate the randomized Kaczmarz method that adaptively updates the stepsize using readily available information for solving inconsistent linear systems. A novel geometric interpretation is provided which shows that the proposed method can be viewed as an orthogonal projection method in some sense. We prove that this method converges linearly in expectation to the unique minimum Euclidean norm least-squares solution of the linear system, and provide a tight upper bound for the convergence of the proposed method. Numerical experiments are also given to illustrate the theoretical results.
翻译:我们调查了随机的Kaczmarz方法,该方法利用随时可用的信息对步骤进行更新,以解决不一致的线性系统。我们提供了一种新的几何解释,表明拟议的方法可以被视为某种意义上的正对投影方法。我们证明,该方法线性汇合线性系统独有的欧几里德规范最低平方分辨率解决方案,并为拟议方法的趋同提供了紧的上限。还进行了数值实验,以说明理论结果。</s>