Topology Optimization seeks to find the best design that satisfies a set of constraints while maximizing system performance. Traditional iterative optimization methods like SIMP can be computationally expensive and get stuck in local minima, limiting their applicability to complex or large-scale problems. Learning-based approaches have been developed to accelerate the topology optimization process, but these methods can generate designs with floating material and low performance when challenged with out-of-distribution constraint configurations. Recently, deep generative models, such as Generative Adversarial Networks and Diffusion Models, conditioned on constraints and physics fields have shown promise, but they require extensive pre-processing and surrogate models for improving performance. To address these issues, we propose a Generative Optimization method that integrates classic optimization like SIMP as a refining mechanism for the topology generated by a deep generative model. We also remove the need for conditioning on physical fields using a computationally inexpensive approximation inspired by classic ODE solutions and reduce the number of steps needed to generate a feasible and performant topology. Our method allows us to efficiently generate good topologies and explicitly guide them to regions with high manufacturability and high performance, without the need for external auxiliary models or additional labeled data. We believe that our method can lead to significant advancements in the design and optimization of structures in engineering applications, and can be applied to a broader spectrum of performance-aware engineering design problems.


翻译:拓扑优化寻求在满足一系列约束条件的情况下最大化系统性能的最佳设计。传统的迭代优化方法如SIMP算法计算代价高且容易陷入局部最小值,限制了它们对复杂或大规模问题的适用性。已经发展了基于学习的方法来加速拓扑优化过程,但这些方法在面临生成分布外的约束配置时会生成将材料浮动且性能低的设计。近期,基于约束和物理场的深度生成模型(例如生成对抗网络和扩散模型)表现出了拓扑优化的希望,但它们需要广泛的预处理和代理模型来提高性能。为了解决这些问题,我们提出了一种生成优化方法,将经典优化方法SIMP作为深度生成模型生成的拓扑结构的精细机制。我们还使用受经典ODE解启发的计算代价低廉的近似方法来消除对物理场的条件约束,并减少了生成可行性和高性能拓扑所需的步骤。我们的方法使我们能够高效生成好的拓扑结构,并明确地引导它们到具有较高可制造性和性能的区域,无需外部辅助模型或其他标记的数据。我们相信我们的方法可以在工程应用的结构设计和优化方面取得显著进展,并可以应用于更广泛的性能感知工程设计问题。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
30+阅读 · 2020年4月15日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
44+阅读 · 2022年9月6日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员