We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-dimensional stationary multivariate Gaussian time series. A sparse-group lasso-based frequency-domain formulation of the problem based on frequency-domain sufficient statistic for the observed time series is presented. We investigate an alternating direction method of multipliers (ADMM) approach for optimization of the sparse-group lasso penalized log-likelihood. We provide sufficient conditions for convergence in the Frobenius norm of the inverse PSD estimators to the true value, jointly across all frequencies, where the number of frequencies are allowed to increase with sample size. This results also yields a rate of convergence. We also empirically investigate selection of the tuning parameters based on Bayesian information criterion, and illustrate our approach using numerical examples utilizing both synthetic and real data.
翻译:我们考虑了推断一个稀少的、高维的多变量高斯时序(CIG)的有条件独立图(CIG)的问题。我们根据观察到的时间序列的频率-域内足够统计数据,提出了基于频率-域内偏少的频率-频率-主位频率-对该问题的公式。我们调查了一种乘数交替方向法(ADMM),以优化稀散的低层低位低位低位低位低位低位的对日志相似性。我们提供了充分的条件,使反私营部门司估计数字的Frobenius规范与所有频率的真值相融合,在所有频率之间,允许频率的频率数与样本大小共同增加。这个结果也产生了一种趋同率。我们还从经验上调查了根据拜伊斯信息标准选择调整参数的情况,并用合成数据与真实数据的数字示例来说明我们的方法。