Predicting the future motion of surrounding road users is a crucial and challenging task for autonomous driving (AD) and various advanced driver-assistance systems (ADAS). Planning a safe future trajectory heavily depends on understanding the traffic scene and anticipating its dynamics. The challenges do not only lie in understanding the complex driving scenarios but also the numerous possible interactions among road users and environments, which are practically not feasible for explicit modeling. In this work, we tackle the above challenges by jointly learning and predicting the motion of all road users in a scene, using a novel convolutional neural network (CNN) and recurrent neural network (RNN) based architecture. Moreover, by exploiting grid-based input and output data structures, the computational cost is independent of the number of road users and multi-modal predictions become inherent properties of our proposed method. Evaluation on the nuScenes dataset shows that our approach reaches state-of-the-art results in the prediction benchmark.
翻译:预测周围道路使用者的未来运动是自主驾驶(AD)和各种先进的助运系统(ADAS)的一项关键和艰巨的任务。规划安全的未来轨迹在很大程度上取决于对交通场景的了解和预测其动态。挑战不仅在于了解复杂的驾驶情景,而且在于道路使用者和环境之间众多可能的互动,这实际上不适于进行明确的建模。在这项工作中,我们通过联合学习和预测所有道路使用者在现场的动作,利用以新颖的神经神经网络和经常神经网络为基础的建筑来应对上述挑战。此外,通过利用基于电网的投入和产出数据结构,计算成本独立于道路使用者的数量和多模式预测成为我们拟议方法的固有特性。对核系统数据集的评估表明,我们的方法在预测基准中达到了最先进的结果。