In this paper, p-dispersion problems are studied to select $p\geqslant 2$ representative points from a large 2D Pareto Front (PF), solution of bi-objective optimization. Four standard p-dispersion variants are considered. A novel variant, Max-Sum-Neighbor p-dispersion, is introduced for the specific case of a 2D PF. Firstly, $2$-dispersion and $3$-dispersion problems are proven solvable in $O(n)$ time in a 2D PF. Secondly, dynamic programming algorithms are designed for three p-dispersion variants, proving polynomial complexities in a 2D PF. Max-min p-dispersion is solvable in $O(pn\log n)$ time and $O(n)$ memory space. Max-Sum-Neighbor p-dispersion is proven solvable in $O(pn^2)$ time and{$O(n)$} space. Max-Sum-min p-dispersion is solvable in $O(pn^3)$ time and $O(pn^2)$ space, this complexity holds also in 1D, proving for the first time that Max-Sum-min p-dispersion is polynomial in 1D. Furthermore, properties of these algorithms are discussed for an efficient implementation {and for a practical application inside bi-objective meta-heuristics.


翻译:在本文中, 对 p- 分散问题进行研究, 从大型 2D Pareto Front (PF) 中选择 $p\ geqslant 2$ 的代表点, 双目标优化的解决方案 。 考虑了四个标准的 p- 分散变体 。 为 2D PFP 的具体情况引入了一个新的变体, Max- Sum- Nighbor p- 分散变体 。 首先, $(n) 分散和 $- 分散问题在 2D PF 中被证明可以溶解 。 其次, 为三种 p- 分散变体变量设计动态程序算法, 在 2D PFP. 中证明 最大- min p- 分散变异体的多式复杂性。 在 $O( pn) 时间和 $(n) 记忆空间变异体中, 最大- Sum- dismission p- deliversial 时间 和 $- discial- col- a col- col- col- col- col- sal- ex- sal- sal- sal- sal- p- ex- sal- ex- sal- sal- a.

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月31日
Arxiv
0+阅读 · 2023年1月30日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员