Given a polyline on $n$ vertices, the polyline simplification problem asks for a minimum size subsequence of these vertices defining a new polyline whose distance to the original polyline is at most a given threshold under some distance measure, usually the local Hausdorff or the local Fr\'echet distance. Here, local means that, for each line segment of the simplified polyline, only the distance to the corresponding sub-curve in the original polyline is measured. Melkman and O'Rourke [Computational Morphology '88] introduced a geometric data structure to solve polyline simplification under the local Hausdorff distance in $O(n^2 \log n)$ time, and Guibas, Hershberger, Mitchell, and Snoeyink [Int. J. Comput. Geom. Appl. '93] considered polyline simplification under the Fr\'echet distance as ordered stabbing and provided an algorithm with a running time of $O(n^2 \log^2 n)$, but they did not restrict the simplified polyline to use only vertices of the original polyline. We show that their techniques can be adjusted to solve polyline simplification under the local Fr\'echet distance in $O(n^2 \log n)$ time instead of $O(n^3)$ when applying the Imai--Iri algorithm. Our algorithm may serve as a more efficient subroutine for multiple other algorithms. We provide a simple algorithm description as well as rigorous proofs to substantiate this theorem. We also investigate the geometric data structure introduced by Melkman and O'Rourke, which we refer to as wavefront, in more detail and feature some interesting properties. As a result, we can prove that under the L$_1$ and the L$_\infty$ norm, the algorithm can be significantly simplified and then only requires a running time of $O(n^2)$. We also define a natural class of polylines where our algorithm always achieves this running time also in the Euclidean norm L$_2$.


翻译:以美元为顶端的多线性线, 多线性简化问题要求这些顶端的最小大小子序列 。 Melkman 和 O'Rourke 的算法 88 引入了一个几何数据结构, 以在某个距离度量下, 通常在本地的Hausdorf 或本地的 Fr\\'echet 距离下, 与原始的顶端值之间的距离最多是一个给定的阈值。 这里, 本地的意思是, 对于简化的多线性能的每条线段, 只能测量原始的顶端线间距下相应的次曲线的距离 。 Melkman 和 O'Rourke 的算法 [Computeralationalalationalalalals'88] 引入了一个几何等量的数据结构, 在本地的 Ousdoralteral deal demotional as.

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月18日
Arxiv
0+阅读 · 2023年3月16日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员