The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is the most prominent multi-objective evolutionary algorithm for real-world applications. While it performs evidently well on bi-objective optimization problems, empirical studies suggest that it is less effective when applied to problems with more than two objectives. A recent mathematical runtime analysis confirmed this observation by proving the NGSA-II for an exponential number of iterations misses a constant factor of the Pareto front of the simple 3-objective OneMinMax problem. In this work, we provide the first mathematical runtime analysis of the NSGA-III, a refinement of the NSGA-II aimed at better handling more than two objectives. We prove that the NSGA-III with sufficiently many reference points -- a small constant factor more than the size of the Pareto front, as suggested for this algorithm -- computes the complete Pareto front of the 3-objective OneMinMax benchmark in an expected number of O(n log n) iterations. This result holds for all population sizes (that are at least the size of the Pareto front). It shows a drastic advantage of the NSGA-III over the NSGA-II on this benchmark. The mathematical arguments used here and in previous work on the NSGA-II suggest that similar findings are likely for other benchmarks with three or more objectives.
翻译:最新的一项数学运行时间分析通过证明NGSA-II的指数性迭代数,证实了这一观察,在简单3个目标 O-Minmax 问题之前的Pareto On Minmax 基准中缺少一个恒定系数。在这项工作中,我们提供了对NSGA-III的第一次数学运行时间分析,这是对NSGA-III的改进,目的是更好地处理两个以上的目标。我们证明,具有足够多参考点的NSGA-III -- -- 一个比Pareto前面的大小还要小的一个不变因素 -- -- 与这一算法的建议相比,它比Pareto前面的大小还要小 -- -- 将3个目标O(nlog n) 的完整Pareto前面的1Minmax基准拼凑成一个不变系数。这个结果将所有人口规模(至少是Pareto ) III的大小,目的是更好地处理两个以上的目标。我们证明,在这里使用的NSGA-II的数学基准中可能具有类似于SGA-III的基准。