Generalizable manipulation requires that robots be able to interact with novel objects and environment. This requirement makes manipulation extremely challenging as a robot has to reason about complex frictional interactions with uncertainty in physical properties of the object and the environment. In this paper, we study robust optimization for planning of pivoting manipulation in the presence of uncertainties. We present insights about how friction can be exploited to compensate for inaccuracies in the estimates of the physical properties during manipulation. Under certain assumptions, we derive analytical expressions for stability margin provided by friction during pivoting manipulation. This margin is then used in a Contact Implicit Bilevel Optimization (CIBO) framework to optimize a trajectory that maximizes this stability margin to provide robustness against uncertainty in several physical parameters of the object. We present analysis of the stability margin with respect to several parameters involved in the underlying bilevel optimization problem. We demonstrate our proposed method using a 6 DoF manipulator for manipulating several different objects.
翻译:通用操作要求机器人能够与新对象和环境互动。 这一要求使得操作极具挑战性, 因为机器人必须解释复杂的摩擦互动与物体和环境的物理特性的不确定性。 在本文中, 我们研究如何在不确定的情况下规划分流操纵的强力优化; 我们就如何利用摩擦来弥补操纵过程中物理特性估计的不准确性提出见解。 根据某些假设, 我们从分流操纵过程中的摩擦中得出稳定性差值的分析表达法。 然后, 在隐含的双层优化接触框架( CIBO) 中使用这一差法优化轨迹, 以尽量扩大这种稳定性差幅, 以抵御物体的若干物理参数的不确定性。 我们分析两层优化问题所涉的若干参数的稳定性差值。 我们用一个 6 DoF 操纵器来控制多个不同的对象。</s>