项目名称: 行星际CME和CIR的磁流体动力学和遥感观测表现的对应关系

项目编号: No.41204129

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 地球物理学和空间物理学

项目作者: 熊明

作者单位: 中国科学院空间科学与应用研究中心

项目金额: 25万元

中文摘要: 白光和行星际闪烁(IPS)的遥感技术已实现内日球层的大视场、全天候、多视角的联合成像,具备对行星际扰动的深空遥测能力,能连续跟踪日冕物质抛射(CME)和共转流相互作用区(CIR)的传播和演化。但遥感信号接收到的是沿视线方向的积分效应,涉及电子密度的加权之和。该权重因子取决于光源、散射体、接收者之间的相对几何位置,具体是白光的Thomson 散射球和IPS的Fresnel滤波半径等。遥感信号的反演和推断存在着较大的不确定性。比如,需要运动学模型和先验假设,才能(1)解读日球成像仪所拍摄的CME和CIR的运动影像,(2)从地面射电望远镜的IPS层析成像中反演电子密度的三维分布。本项目对行星际MHD过程建模,模拟CME和CIR扰动,揭示扰动与背景太阳风之间和多个扰动之间的相互作用,正演白光和射电的观测表现,进而将模型计算与具体观测事件比较,加深理解行星际的大尺度动力学和遥感成像技术的探测能力。

中文关键词: 内日球层;日冕物质抛射;共转流相互作用区;磁流体力学;遥感探测

英文摘要: Coordinated remote-sensing imaging in white light and interplanetary scintillation (IPS) can routinely monitor a wide field of the inner heliosphere from multiple vantage perspectives. Interplanetary disturbances such as coronal mass ejections (CMEs) and corotating interaction regions (CIRs) are continuously tracked in optics and radio. However, remote sensing signals are as a result of line-of-sight integration of weighted electron density. The weighted factors are determined by relative geometry between the light source, scattering sites, and a receiver. Specifically, the relative geometry refers to a Thomson scattering sphere in white light and a Fresnel filtering radius in IPS. At large elongations from the Sun, inversion and interpretation of remote sensing signals suffer from large uncertainties. For instance, kinematics models and unverified assumptions are used in interpreting brightness patterns of CMEs and CIRs imaged by the STEREO/HIs, and reconstructing 3D distribution of electron density from IPS tomography. In this proposal, we plan to construct a numerical MHD model of interplanetary space, model CMEs and CIRs, uncover the dynamics of CME-CME interacting and CME-CIR coupling, calculate synthetic observations in optics and IPS, compare modeling results with realistic observation events, and improve

英文关键词: inner heliosphere;coronal mass ejection;corotating interaction region;magnetohydrodynamics;remote sensing

成为VIP会员查看完整内容
0

相关内容

专知会员服务
32+阅读 · 2021年7月1日
最新《时序数据分析》书稿,512页pdf
专知会员服务
112+阅读 · 2020年12月25日
【TAMU】最新《时间序列分析》课程笔记,527页pdf
专知会员服务
180+阅读 · 2020年9月12日
【开放书】SLAM 中的几何与学习方法,62页pdf
专知会员服务
109+阅读 · 2020年6月5日
从最小二乘法到卡尔曼滤波
PaperWeekly
1+阅读 · 2021年12月22日
IEEE WHISPERS大规模高光谱目标跟踪挑战赛来了!
中国图象图形学报
60+阅读 · 2020年7月8日
【泡泡点云时空】基于分割方法的物体六维姿态估计
泡泡机器人SLAM
18+阅读 · 2019年9月15日
一文道尽softmax loss及其变种
极市平台
14+阅读 · 2019年2月19日
IMU 标定 | 工业界和学术界有什么不同?
计算机视觉life
14+阅读 · 2019年1月8日
视觉里程计:起源、优势、对比、应用
计算机视觉life
18+阅读 · 2017年7月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2020年9月16日
小贴士
相关资讯
从最小二乘法到卡尔曼滤波
PaperWeekly
1+阅读 · 2021年12月22日
IEEE WHISPERS大规模高光谱目标跟踪挑战赛来了!
中国图象图形学报
60+阅读 · 2020年7月8日
【泡泡点云时空】基于分割方法的物体六维姿态估计
泡泡机器人SLAM
18+阅读 · 2019年9月15日
一文道尽softmax loss及其变种
极市平台
14+阅读 · 2019年2月19日
IMU 标定 | 工业界和学术界有什么不同?
计算机视觉life
14+阅读 · 2019年1月8日
视觉里程计:起源、优势、对比、应用
计算机视觉life
18+阅读 · 2017年7月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员