We consider the problem of automatically synthesizing a hybrid controller for non-linear dynamical systems which ensures that the closed-loop fulfills an arbitrary \emph{Linear Temporal Logic} specification. Moreover, the specification may take into account logical context switches induced by an external environment or the system itself. Finally, we want to avoid classical brute-force time- and space-discretization for scalability. We achieve these goals by a novel two-layer strategy synthesis approach, where the controller generated in the lower layer provides invariant sets and basins of attraction, which are exploited at the upper logical layer in an abstract way. In order to achieve this, we provide new techniques for both the upper- and lower-level synthesis. Our new methodology allows to leverage both the computing power of state space control techniques and the intelligence of finite game solving for complex specifications, in a scalable way.
翻译:暂无翻译