We consider least squares estimators of the finite regression parameter $\alpha$ in the single index regression model $Y=\psi(\alpha^T X)+\epsilon$, where $X$ is a $d$-dimensional random vector, $\E(Y|X)=\psi(\alpha^T X)$, and where $\psi$ is monotone. It has been suggested to estimate $\alpha$ by a profile least squares estimator, minimizing $\sum_{i=1}^n(Y_i-\psi(\alpha^T X_i))^2$ over monotone $\psi$ and $\alpha$ on the boundary $S_{d-1}$of the unit ball. Although this suggestion has been around for a long time, it is still unknown whether the estimate is $\sqrt{n}$ convergent. We show that a profile least squares estimator, using the same pointwise least squares estimator for fixed $\alpha$, but using a different global sum of squares, is $\sqrt{n}$-convergent and asymptotically normal. The difference between the corresponding loss functions is studied and also a comparison with other methods is given.
翻译:我们认为,在单一指数回归模型中,最小回归参数的估算方程最小的方程 $\ alpha$$\ ALpha$\ ALpha$\ psilon$Y psi (\ ALpha+TX) ⁇ epsilon$, 美元是单位球的一维随机矢量, 美元是美元, 美元是美元, 美元是美元, 美元是一元, 美元是美元, 美元是最低的, 美元是最低的, 美元是最低的, 美元是最低的, 美元是最低的, 单位球的一元是美元, 美元是美元, 美元是最低的。