Approximating convex bodies is a fundamental question in geometry and has a wide variety of applications. Consider a convex body $K$ of diameter $\Delta$ in $\textbf{R}^d$ for fixed $d$. The objective is to minimize the number of vertices (alternatively, the number of facets) of an approximating polytope for a given Hausdorff error $\varepsilon$. It is known from classical results of Dudley (1974) and Bronshteyn and Ivanov (1976) that $\Theta((\Delta/\varepsilon)^{(d-1)/2})$ vertices (alternatively, facets) are both necessary and sufficient. While this bound is tight in the worst case, that of Euclidean balls, it is far from optimal for skinny convex bodies. A natural way to characterize a convex object's skinniness is in terms of its relationship to the Euclidean ball. Given a convex body $K$, define its \emph{volume diameter} $\Delta_d$ to be the diameter of a Euclidean ball of the same volume as $K$, and define its \emph{surface diameter} $\Delta_{d-1}$ analogously for surface area. It follows from generalizations of the isoperimetric inequality that $\Delta \geq \Delta_{d-1} \geq \Delta_d$. Arya, da Fonseca, and Mount (SoCG 2012) demonstrated that the diameter-based bound could be made surface-area sensitive, improving the above bound to $O((\Delta_{d-1}/\varepsilon)^{(d-1)/2})$. In this paper, we strengthen this by proving the existence of an approximation with $O((\Delta_d/\varepsilon)^{(d-1)/2})$ facets.


翻译:- 多面体逼近的最优体积敏感界限 翻译后的摘要: 近似凸体是几何学中的一个基本问题,也有广泛的应用。考虑一个直径为$\Delta$的$\textbf{R}^d$中的凸体$K$($d$为固定值)。目标是在给定的Hausdorff误差$\varepsilon$下,最小化近似多面体的顶点数(或者说是面数)。经典结果Dudley(1974)和Bronshteyn以及Ivanov(1976)表明,$\Theta((\Delta/\varepsilon)^{(d-1)/2})$个顶点(或者说面)是必要的且充分的。尽管在最坏情况下,也就是欧几里得球的情况下该界限是紧的,但在薄凸体的情况下远非最优。刻画一个凸体的瘦度的一个自然方式是将其与欧几里得球进行比较。给定凸体$K$,定义其 \emph{体积直径} $\Delta_d$ 为具有相同体积的欧几里得球的直径,类似地定义其 \emph{表面直径} $\Delta_{d-1}$ 与表面积相同。由于等周不等式的推广,得到$\Delta \geq \Delta_{d-1} \geq \Delta_d$。 Arya,da Fonseca和Mount (SoCG 2012)证明了直径界限可以采用表面积进行优化,将上述界限改善为$ O((\Delta_{d-1}/\varepsilon)^{(d-1)/2})$。本文在此基础上进一步证明,存在一个包含$O((\Delta_d/\varepsilon)^{(d-1)/2})$个面的近似。

0
下载
关闭预览

相关内容

【干货书】实值与凸分析,172页pdf,Real and Convex Analysis
专知会员服务
41+阅读 · 2023年1月2日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
0+阅读 · 2023年5月5日
VIP会员
相关VIP内容
【干货书】实值与凸分析,172页pdf,Real and Convex Analysis
专知会员服务
41+阅读 · 2023年1月2日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员