Multiple-input multiple-output (MIMO) system has been the defining mobile communications technology in recent generations. With the ever-increasing demands looming towards the sixth generation (6G), we are in need of additional degrees of freedom that deliver further gains beyond MIMO. To this goal, fluid antenna system (FAS) has emerged as a new way to obtain spatial diversity using reconfigurable position-switchable antennas. Considering the case with more than one ports activated on a 2D fluid antenna surface at both ends, we take the information-theoretic approach to study the achievable performance limits of the MIMO-FAS. First of all, we propose a suboptimal scheme, referred to as QR MIMO-FAS, to maximize the rate at high signal-to-noise ratio (SNR) via joint port selection, transmit and receive beamforming and power allocation. We then derive the optimal diversity and multiplexing tradeoff (DMT) of MIMO-FAS. From the DMT, we highlight that MIMO-FAS outperforms traditional MIMO antenna systems. Further, we introduce a new metric, namely q-outage capacity, which can jointly consider rate and outage probability. Through this metric, our results indicate that MIMO-FAS surpasses traditional MIMO greatly.
翻译:暂无翻译