We propose a novel method for enforcing AI fairness with respect to protected or sensitive factors. This method uses a dual strategy performing training and representation alteration (TARA) for the mitigation of prominent causes of AI bias by including: a) the use of representation learning alteration via adversarial independence to suppress the bias-inducing dependence of the data representation from protected factors; and b) training set alteration via intelligent augmentation to address bias-causing data imbalance, by using generative models that allow the fine control of sensitive factors related to underrepresented populations via domain adaptation and latent space manipulation. When testing our methods on image analytics, experiments demonstrate that TARA significantly or fully debiases baseline models while outperforming competing debiasing methods that have the same amount of information, e.g., with (% overall accuracy, % accuracy gap) = (78.8, 0.5) vs. the baseline method's score of (71.8, 10.5) for EyePACS, and (73.7, 11.8) vs. (69.1, 21.7) for CelebA. Furthermore, recognizing certain limitations in current metrics used for assessing debiasing performance, we propose novel conjunctive debiasing metrics. Our experiments also demonstrate the ability of these novel metrics in assessing the Pareto efficiency of the proposed methods.


翻译:我们建议一种新颖的方法,在受保护或敏感因素方面执行大赦国际的公平性。这一方法使用一种双重战略,开展培训和代表性改变(TARA),以缓解大赦国际偏见的突出原因,其方法是:(a) 通过对抗性独立性,使用代表性改变,以抑制数据代表从受保护因素中产生偏向性依赖;(b) 通过智能增强,建立一套培训,通过智能增强,解决造成偏向的数据不平衡问题,方法是使用基因化模型,以便通过域适应和潜在空间操纵对与代表性不足人口有关的敏感因素进行精细控制。在测试我们的图像分析方法时,实验表明TARA明显或完全贬低基线模型,而比具有相同数量的信息(例如,总体准确率,准确度差距%)=(78.8,0.5)与EyePACS的基准评分数(71.8,10.5)和(73.7,11.8)与CeebA的(69.1, 21.7)相比。此外,我们认识到目前用来评估贬低性基准模型能力的方法存在某些限制。我们还提议在评估新的衡量效率的能力方面进行新的衡量。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年7月3日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Arxiv
3+阅读 · 2019年3月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员